Bottlenecks for Weil-Petersson geodesics

نویسندگان

چکیده

We introduce a method for constructing Weil-Petersson (WP) geodesics with certain behavior in the Teichmüller space. This allows us to study itinerary of among strata WP completion and its relation subsurface projection coefficients their end invariants. As an application we demonstrate disparity between short curves universal curve over geodesic those associated hyperbolic 3–manifold.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limit Sets of Weil-petersson Geodesics

In this paper we investigate limit sets of Weil-Petersson geodesics in the Thurston compactification of Teichmüller space.

متن کامل

Average Curvatures of Weil-Petersson Geodesics In Teichmüller Space

Every point in Teichmüller space is a hyperbolic metric on a given Riemann surface, therefore, a Weil-Petersson geodesic in Teichmüller space can be viewed as a 3-manifold. We investigate the sectional curvatures of this 3-manifold, with a natural metric. We obtain explicit formulas for the curvature tensors of this metric, and show that the “average”s of them are zero, and hence the geometry o...

متن کامل

Iteration of Mapping Classes and Limits of Weil-petersson Geodesics

Let S = Sg be a closed surface of genus g with g > 2, Mod(S) be the mapping class group of S and Teich(S) be the Teichmüller space of S endowed with the Weil-Petersson metric. Fix X,Y ∈ Teich(S). In this paper, we show that for any φ ∈ Mod(S), there exists a positive integer k only depending on φ such that the sequence of the directions of the geodesics connecting X and φkn ◦Y is convergent in ...

متن کامل

Cusp Excursions of Random Geodesics in Weil-petersson Type Metrics

We consider Weil-Petersson type incomplete metrics on orientable surfaces of finite type. We analyse cusp excursions of random geodesics proving bounds for maximal excursions.

متن کامل

Classification of Weil-petersson Isometries

This paper contains two main results. The first is the existence of an equivariant Weil-Petersson geodesic in Teichmüller space for any choice of pseudo-Anosov mapping class. As a consequence one obtains a classification of the elements of the mapping class group as WeilPetersson isometries which is parallel to the Thurston classification. The second result concerns the asymptotic behavior of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2021

ISSN: ['1857-8365', '1857-8438']

DOI: https://doi.org/10.1016/j.aim.2021.107628